
Понятие «вероятности» математики рассматривают как величину, принимающую значения на отрезке от нуля до единицы. При этом ноль соответствует абсолютно невероятному событию (пример: Борис Немцов станет президентом РФ), а единица принимается за абсолютно вероятное (пример: Путин умрёт в XXI веке). В простом эксперименте с подбрасыванием монеты теория вероятности часто принимает шансы «орла» и «решки» равными 0.5, однако на практике доли вероятности зависят от изгибов каждой конкретной монеты, поэтому нос королевы Елизаветы II, выбитый на британском фунте, уменьшает вероятность попадания «мордой вниз» на несколько сотых процента.
Главным постулатом теории вероятности является так называемый «Закон больших чисел». Он гласит, что при большом количестве экспериментов их фактические результаты будут стремиться к математическому распределению их вероятностей. Пример: если вы бросите монетку очень-очень много раз, то примерно в половине случаев получите орла. И это «примерно» будет стремиться к «ровно» с увеличением количества подбрасываний.
Пример простой задачки по теории вероятности: какова вероятность, что при пяти подбрасываниях «идеальной» монетки выпадут четыре орла и одна решка? Решение: согласно биномиальному распределению Y ~ Bin(5, 0.5) получаем, что вероятность для 4 орлов в пяти подбрасываниях монетки равна 5*(0.5)4*(0.5)1, то есть 5/32, что равно 0.15625.
В этом эксперименте из пяти попыток вероятности распределяются так:
Ноль орлов: вероятность 1/32
Один орёл: вероятность 5/32
Два орла: вероятность 10/32
Три орла: вероятность 10/32
Четыре орла: вероятность 5/32
Пять орлов: вероятность 1/32
И в сумме мы всегда получаем единицу, ведь одно из этих шести событий обязательно наступит.
Метки / Математика